Existência de matéria de quarks fria na Natureza Modelos e Observações

Seminário do Grupo de Hádrons e Física Teórica (IFUSP)

Rodrigo Alvares de Souza

Instituto de Astronomia, Geofísica e Ciências Atmosféricas da USP

31 de maio de 2016

Rodrigo Souza (IAG-USP)

Existência de CQM na Natureza

Objetivos

- 2 Estrelas de Nêutrons e Estrutura Estelar
- 3 Hadrodinâmica Quântica e CQM
- Presença de CQM em Estrelas de Nêutrons

5 Conclusões

Objetivos

- Estudo da matéria superdensa.
- Estudo das transições de fase hádron \rightarrow matéria de quarks fria.
- Composição das estrelas de nêutrons em face das observações.

Estrelas de Nêutrons e Estrutura Estelar

Rodrigo Souza (IAG-USP)

Existência de CQM na Natureza

31 de maio de 2016 4 / 47

NATURE | LETTER

日本語要約

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts & J. W. T. Hessels

Affiliations | Contributions | Corresponding author

Nature 467, 1081–1083 (28 October 2010) | doi:10.1038/nature09466 Received 07 July 2010 | Accepted 01 September 2010 | Published online 27 October 2010

RESEARCH ARTICLE

A Massive Pulsar in a Compact Relativistic Binary

John Antoniadis¹¹, Paulo C. C. Freire¹, Norbert Wex¹, Thomas M. Taurls^{2,1}, Ryan S. Lynch³, Marten H. van Kerkwijk⁴, Michael Kramer^{1,5}, Cees Bass³, Vik S. Dhillon⁶, Thomas Drebe¹, Jason W. T. Hessels^{6,9}, Victoria M. Kasp³, Vladislav I. Kondratilev^{6,10}, Norbert Langer^{6,7}, Thomas R. Marsh¹¹, Maura A. McLaughlin¹², Timothy T. Pennucci¹³, Scott M. Ransom⁴, Ingrid H. Stairs¹⁵, Joer van Leeuwen⁶, Joris P. V. Verbiest, David G. Whelan¹³

・ロト ・ 同ト ・ 日 ト ・ 日

< 🔒

Rodrigo Souza (IAG-USP)

Existência de CQM na Natureza

Composição das Estrelas de Nêutrons

- Não há consenso sobre a equação de estado das estrelas de nêutrons.
- Diferentes abordagens podem levar à massas máximas diferentes.
- Cada equação de estado produz uma sequência única de estrelas no diagrama massa-raio.

Rodrigo Souza (IAG-USP)

Existência de CQM na Natureza

Diagrama Massa-Raio

Hadrodinâmica Quântica e CQM

- Matéria nuclear pode ser descrita através de modelos efetivos, considerando apenas graus de liberdade dos núcleons.
- Modelos efetivos foram comumente apresentados através de teorias relativísticas de campo médio.
- Possuem parâmetros à serem ajustados através de dados experimentais.

- Matéria nuclear pode ser descrita através de modelos efetivos, considerando apenas graus de liberdade dos núcleons.
- Modelos efetivos foram comumente apresentados através de teorias relativísticas de campo médio.
- Possuem parâmetros à serem ajustados através de dados experimentais.

Vários modelos na literatura:

- Modelo σ - ω de Walecka.
- Modelo Zimanyi e Moszkowski.
- Modelo do acoplamento ajústavel de Taurines et al. (2001).

Modelo $\sigma - \omega - \rho - \delta - \phi$ (SWRDP)

- Proposto por Gomes et al.(2015) baseado no modelo de acoplamento ajustável.
- Iniciativa para unificar o modelo de Taurines e Zimanyi/Moszkowski.
- Considera um acoplamento derivativo parametrizado que simula as forças de muitos corpos (parâmetro ζ) pela inclusão de auto-interações não lineares e termos de interação méson-méson para os mésons escalares.

Inclui o conjunto completo de mésons relevantes na escala de energia:

- $\omega \phi$ (vetor-escalar)
- $\sigma \sigma^*$ (escalar-isoescalar)
- ρ (vetor-isovetor) e δ (escalar-isovetor)

Modelo SWRDP - Lagrangiana

$$\begin{split} \mathcal{L} &= \sum_{b} \overline{\psi}_{b} \left[\gamma_{\mu} \left(i\partial^{\mu} - g^{*}_{\omega b\xi} \omega^{\mu} - g^{*}_{\phi b\kappa} \phi^{\mu} - \frac{1}{2} g^{*}_{\varrho b\eta} \boldsymbol{\tau} \cdot \boldsymbol{\varrho}^{\mu} \right) \\ &- \left(1 + \frac{g_{\sigma b} \sigma + g_{\sigma^{*} b} \sigma^{*} + \frac{1}{2} g_{\delta b} \boldsymbol{\tau} \cdot \delta}{\zeta m_{b}} \right)^{-\zeta} m_{b} \right] \psi_{b} \\ &+ \left(\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - m^{2}_{\sigma} \sigma^{2} \right) + \left(\frac{1}{2} \partial_{\mu} \sigma^{*} \partial^{\mu} \sigma^{*} - m^{2}_{\sigma^{*}} \sigma^{*2} \right) \\ &+ \frac{1}{2} \left(-\frac{1}{2} \omega_{\mu \nu} \omega^{\mu \nu} + m^{2}_{\omega} \omega_{\mu} \omega^{\mu} \right) + \frac{1}{2} \left(-\frac{1}{2} \phi_{\mu \nu} \phi^{\mu \nu} + m^{2}_{\phi} \phi_{\mu} \phi^{\mu} \right) \\ &+ \frac{1}{2} \left(-\frac{1}{2} \varrho_{\mu \nu} \cdot \varrho^{\mu \nu} + m^{2}_{\varrho} \varrho_{\mu} \cdot \varrho^{\mu} \right) + \left(\frac{1}{2} \partial_{\mu} \delta \cdot \partial^{\mu} \delta - m^{2}_{\delta} \delta^{2} \right) \\ &+ \sum_{l} \overline{\psi}_{l} \gamma_{\mu} \left(i\partial^{\mu} - m_{l} \right) \psi_{l}. \end{split}$$

Rodrigo Souza (IAG-USP)

э

Modelo SWRDP - Lagrangiana

$$\begin{split} \mathcal{L} &= \sum_{b} \overline{\psi}_{b} \left[\gamma_{\mu} \left(i\partial^{\mu} - g^{*}_{\omega b\xi} \omega^{\mu} - g^{*}_{\phi b\kappa} \phi^{\mu} - \frac{1}{2} g^{*}_{\varrho b\eta} \tau \cdot \varrho^{\mu} \right) \\ &- \left(1 + \frac{g_{\sigma b} \sigma + g_{\sigma^{*} b} \sigma^{*} + \frac{1}{2} g_{\delta b} \tau \cdot \delta}{\zeta m_{b}} \right)^{-\zeta} m_{b} \right] \psi_{b} \\ &+ \left(\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - m^{2}_{\sigma} \sigma^{2} \right) + \left(\frac{1}{2} \partial_{\mu} \sigma^{*} \partial^{\mu} \sigma^{*} - m^{2}_{\sigma^{*}} \sigma^{*2} \right) \\ &+ \frac{1}{2} \left(-\frac{1}{2} \omega_{\mu \nu} \omega^{\mu \nu} + m^{2}_{\omega} \omega_{\mu} \omega^{\mu} \right) + \frac{1}{2} \left(-\frac{1}{2} \phi_{\mu \nu} \phi^{\mu \nu} + m^{2}_{\phi} \phi_{\mu} \phi^{\mu} \right) \\ &+ \frac{1}{2} \left(-\frac{1}{2} \varrho_{\mu \nu} \cdot \varrho^{\mu \nu} + m^{2}_{\varrho} \varrho_{\mu} \cdot \varrho^{\mu} \right) + \left(\frac{1}{2} \partial_{\mu} \delta \cdot \partial^{\mu} \delta - m^{2}_{\delta} \delta^{2} \right) \\ &+ \sum_{l} \overline{\psi}_{l} \gamma_{\mu} \left(i\partial^{\mu} - m_{l} \right) \psi_{l}. \end{split}$$

э

Modelo SWRDP - EoS

э

э

Matéria de Quarks Fria

- O Modelo Padrão aponta os quarks como uma das partículas fundamentais no universo.
- QCD: teoria fundamental que descreve a matéria de quarks através da interação forte entre férmions que possuem carga de cor.

< □ > < 同 >

Nos regimes extremos de energia, a QCD apresenta duas propriedades:

- Confinamento: necessária energia infinita para separar dois quarks, no regime de baixas energias.
- Liberdade assintótica: quarks e glúons interagem fracamente em curtas distâncias, no regime de altas energias.

Nos regimes extremos de energia, a QCD apresenta duas propriedades:

- Confinamento: necessária energia infinita para separar dois quarks, no regime de baixas energias.
- Liberdade assintótica: quarks e glúons interagem fracamente em curtas distâncias, no regime de altas energias.

Para diferentes regiões do diagrama de fases da QCD, é prevista a existência de novas fases da matéria, como a matéria fria de quarks localmente desconfinados, que se existir na Natureza, será no interior das estrelas de nêutrons.

Matéria de Quarks Fria - Diagrama de fases da QCD

Rodrigo Souza (IAG-USP)

Existência de CQM na Natureza

31 de maio de 2016

Sar

Muitas vezes é necessário modelar sistemas físicos complicados usando o método da teoria de perturbação. No entanto, como as perturbações irregulares são grandes na QCD, o método não é viável neste contexto.

Muitas vezes é necessário modelar sistemas físicos complicados usando o método da teoria de perturbação. No entanto, como as perturbações irregulares são grandes na QCD, o método não é viável neste contexto.

Solução? Modelos Efetivos.

- Lattice QCD.
- Modelos de Sacola.
- QCD de Campo Médio (MFTQCD).
- Extensão Infravermelha da QCD (QCDIRE).

A Teoria do Campo Médio da QCD, desenvolvida por Fogaça e Navarra (2011), é uma teoria baseada na QCD que assume que o campo de glúons pode ser decomposto em componentes de baixos e altos momentos.

 $G^{\alpha\mu} = A^{\alpha\mu}(k) + \alpha(k)^{\alpha\mu}$

A Teoria do Campo Médio da QCD, desenvolvida por Fogaça e Navarra (2011), é uma teoria baseada na QCD que assume que o campo de glúons pode ser decomposto em componentes de baixos e altos momentos.

 $G^{\alpha\mu} = A^{\alpha\mu}(k) + \alpha(k)^{\alpha\mu}$

 Os valores médios esperados nos campos de baixos momentos são identificados com condensados de glúons de dimensão dois e quatro. A Teoria do Campo Médio da QCD, desenvolvida por Fogaça e Navarra (2011), é uma teoria baseada na QCD que assume que o campo de glúons pode ser decomposto em componentes de baixos e altos momentos.

 $G^{\alpha\mu} = A^{\alpha\mu}(k) + \alpha(k)^{\alpha\mu}$

- Os valores médios esperados nos campos de baixos momentos são identificados com condensados de glúons de dimensão dois e quatro.
- O campo com dimensão dois, $\left\langle g^2 A^{\alpha\mu} A^{\alpha}_{\mu} \right\rangle$, gera a chamada massa dinâmica do glúon, m_G .

A Teoria do Campo Médio da QCD, desenvolvida por Fogaça e Navarra (2011), é uma teoria baseada na QCD que assume que o campo de glúons pode ser decomposto em componentes de baixos e altos momentos.

 $G^{\alpha\mu} = A^{\alpha\mu}(k) + \alpha(k)^{\alpha\mu}$

- Os valores médios esperados nos campos de baixos momentos são identificados com condensados de glúons de dimensão dois e quatro.
- O campo com dimensão dois, $\left\langle g^2 A^{\alpha\mu} A^{\alpha}_{\mu} \right\rangle$, gera a chamada massa dinâmica do glúon, m_G .
- O campo com dimensão quatro, $\left\langle \frac{1}{4}F^{\alpha\mu\nu}F^{\alpha}_{\mu\nu}\right\rangle$, gera um termo análogo à constante de sacola na energia e pressão, \mathcal{B}_{QCD} .

$$\mathcal{L} = -\frac{1}{2} \alpha_0^{\alpha} \left(\vec{\nabla}^2 \alpha_0^{\alpha} + \frac{m_G^2}{2} \alpha_0^{\alpha} \alpha_0^{\alpha} - b \phi_0^4 \right) + \\ \bar{\psi}_i \left(i \delta_{ij} \gamma^{\mu} \partial_{\mu} + g_h \gamma^0 T_{ij}^{\alpha} \alpha_0^{\alpha} - \delta_{ij} m \right) \psi_j$$

$$\mathcal{L} = -\frac{1}{2} \alpha_0^{\alpha} \left(\vec{\nabla}^2 \alpha_0^{\alpha} + \frac{m_G^2}{2} \alpha_0^{\alpha} \alpha_0^{\alpha} - b \phi_0^4 \right) + \\ \bar{\psi}_i \left(i \delta_{ij} \gamma^{\mu} \partial_{\mu} + g_h \gamma^0 T_{ij}^{\alpha} \alpha_0^{\alpha} - \delta_{ij} m \right) \psi_j$$

• α_0 : aproximação de campo médio do campo dos *hard* glúons $\alpha^{\alpha}_{\mu} \rightarrow \langle \alpha^{\alpha}_{\mu} \rangle = \alpha^{\alpha}_0 \delta_{\mu 0}.$

$$\mathcal{L} = -\frac{1}{2}\alpha_0^{\alpha} \left(\vec{\nabla}^2 \alpha_0^{\alpha} + \frac{m_G^2}{2} \alpha_0^{\alpha} \alpha_0^{\alpha} - b\phi_0^4 \right) + \\ \bar{\psi}_i \left(i\delta_{ij} \gamma^{\mu} \partial_{\mu} + g_h \gamma^0 T_{ij}^{\alpha} \alpha_0^{\alpha} - \delta_{ij} m \right) \psi_j$$

- α_0 : aproximação de campo médio do campo dos *hard* glúons $\alpha^{\alpha}_{\mu} \rightarrow \langle \alpha^{\alpha}_{\mu} \rangle = \alpha^{\alpha}_0 \delta_{\mu 0}.$
- g_H: constante de acomplamento dos hard glúons (g_s foi incorporada nas aproximações do campo).

$$\mathcal{L} = -\frac{1}{2} \alpha_0^{\alpha} \left(\vec{\nabla}^2 \alpha_0^{\alpha} + \frac{m_G^2}{2} \alpha_0^{\alpha} \alpha_0^{\alpha} - b \phi_0^{-4} \right) + \\ \bar{\psi}_i \left(i \delta_{ij} \gamma^{\mu} \partial_{\mu} + g_h \gamma^0 T_{ij}^{\alpha} \alpha_0^{\alpha} - \delta_{ij} m \right) \psi_j$$

- α_0 : aproximação de campo médio do campo dos *hard* glúons $\alpha^{\alpha}_{\mu} \rightarrow \langle \alpha^{\alpha}_{\mu} \rangle = \alpha^{\alpha}_0 \delta_{\mu 0}.$
- g_H: constante de acomplamento dos hard glúons (g_s foi incorporada nas aproximações do campo).
- *m_G*: massa dinâmica do glúon.

QCD de Campo Médio - Energia

Energia

$$\varepsilon = \left(\frac{27}{16}\right) \left(\frac{g}{m_G}\right)^2 \rho_B^2 + \mathcal{B}_{QCD} + \sum_{i=u,d,s} 3\frac{\gamma_Q}{2\pi^2} \left\{\frac{k_i^3 \sqrt{k_i^2 + m_i^2}}{4} + \frac{m_i^2 k_i \sqrt{k_i^2 + m_i^2}}{8} \right. \\ \left. -\frac{m_i^4}{8} ln \left[k_i + \sqrt{k_i^2 + m_i^2}\right] + \frac{m_i^4}{16} ln(m_i^2) \right\} \\ \left. + \frac{\gamma_e}{2\pi^2} \left\{\frac{k_e^3 \sqrt{k_e^2 + m_e^2}}{4} + \frac{m_e^2 k_e \sqrt{k_e^2 + m_e^2}}{8} \right. \\ \left. -\frac{m_e^4}{8} ln \left[k_i + \sqrt{k_e^2 + m_e^2}\right] + \frac{m_e^4}{16} ln(m_e^2) \right\} \right\}$$

Rodrigo Souza (IAG-USP)

Existência de CQM na Natureza

QCD de Campo Médio - Energia

Energia

$$\varepsilon = \left(\frac{27}{16}\right) \left(\frac{g}{m_G}\right)^2 \rho_B^2 + \mathcal{B}_{QCD} \qquad \text{Parâmetro } \xi \\ + \sum_{i=u,d,s} 3\frac{\gamma_Q}{2\pi^2} \left\{ \frac{k_i^3 \sqrt{k_i^2 + m_i^2}}{4} + \frac{m_i^2 k_i \sqrt{k_i^2 + m_i^2}}{8} \right. \\ \left. - \frac{m_i^4}{8} ln \left[k_i + \sqrt{k_i^2 + m_i^2} \right] + \frac{m_i^4}{16} ln(m_i^2) \right\} \\ \left. + \frac{\gamma_e}{2\pi^2} \left\{ \frac{k_e^3 \sqrt{k_e^2 + m_e^2}}{4} + \frac{m_e^2 k_e \sqrt{k_e^2 + m_e^2}}{8} \right. \\ \left. - \frac{m_e^4}{8} ln \left[k_i + \sqrt{k_e^2 + m_e^2} \right] + \frac{m_e^4}{16} ln(m_e^2) \right\} \right\}$$

QCD de Campo Médio - Pressão

Pressão

$$p = \left(\frac{27g^2}{16m_G^2}\right)\rho_B^2 - \mathcal{B}_{QCD} + \sum_{i=u,d,s} \frac{\gamma_Q}{2\pi^2} \left\{\frac{k_i^3\sqrt{k_i^2 + m_i^2}}{4} - \frac{3m_i^2k_i\sqrt{k_i^2 + m_i^2}}{8} \right. \\ \left. + \frac{3m_i^4}{8}ln\left[k_i + \sqrt{k_i^2 + m_i^2}\right] - \frac{3m_i^4}{16}ln(m_i^2)\right\} \\ \left. + \frac{\gamma_e}{6\pi^2} \left\{\frac{k_e^3\sqrt{k_e^2 + m_e^2}}{4} - \frac{3m_e^2k_e\sqrt{k_e^2 + m_e^2}}{8} \right. \\ \left. + \frac{3m_e^4}{8}ln\left[k_e + \sqrt{k_e^2 + m_e^2}\right] - \frac{3m_e^4}{16}ln(m_e^2)\right\} \right\}$$

QCD de Campo Médio - Parâmetros

- Busca-se uma região de parâmetros que seja instável para que a transição de fase ocorra.
- Valores à esquerda da linha sólida são absolutamente estáveis.
- Os modelos estelares decorrentes da matéria estável foi estudado por Franzon et al. (2012).

QCD de Campo Médio - Parâmetros

Sensibilidade de parâmetros do Modelo MFTQCD

- Alta sensibilidade ao parâmetro $\xi = \frac{q}{m_G}$.
- Baixa sensibilidade ao parâmetro $\mathcal{B}_{QCD} = \left\langle \frac{1}{4} F^{\alpha\mu\nu} F^{\alpha}_{\mu\nu} \right\rangle = \langle F^2 \rangle.$

QCD de Campo Médio - Equação de Estado

Sac

Extensão Infravermelha da QCD (QCDIRE)

Confinamento

- Não existe consenso para um critério teórico para o confinamento.
- Osterwalder e Schrader (1973) sugerem que o confinamento está codificado na violação de positividade de reflexão do propagador do quark.

Extensão Infravermelha da QCD (QCDIRE)

Parametriza o propagador do quark em 3 constantes, obtidas através de simulações computacionais na rede.

Extensão Infravermelha da QCD

- Ponto de partida: Ação equivalente à da QCD em altas energias.
- O cálculo é exato, a partir da função de partição.

No limite $T \rightarrow 0$

$$\log Z(0,\mu) = 2\beta V N_c N_f \int \frac{d^3 p}{(2\pi)^3} \int_0^\infty \frac{d\theta}{2\pi} [f(i\theta + \mu) + f(-i\theta + \mu)]$$

$$f(\xi) = \log \left\{ \frac{\Omega_p^2(\xi^2) - \xi^2}{\Omega_p^2[(\xi - \mu)^2] - (\xi - \mu)^2} \right\}$$

$$\Omega_p^2(\zeta) = \mathbf{p}^2 + \left[\frac{M_3}{-\zeta + \mathbf{p}^2 + m^2} + m_0 \right]^2$$

Extensão Infravermelha da QCD - Equação de Estado

Rodrigo Souza (IAG-USP)

Existência de CQM na Natureza

Presença de CQM em Estrelas de Nêutrons

Rodrigo Souza (IAG-USP)

Existência de CQM na Natureza

31 de maio de 2016 30 / 47

Presença de CQM em Estrelas de Nêutrons

- No Relativistic Heavy Ion Collider (RHIC) já foram observados sistemas com temperatura alta e potencial químico próximo de zero.
- Espera-se que um sistema com potencial químico alto e temperatura próxima de zero exista em estrelas de nêutrons.

Transições de Fase

Podem existir transições de fase no interior de estrelas de nêutrons, da matéria hadrônica para a matéria de quarks fria, a partir de uma densidade crítica.

- As densidades em questão serão acima da densidade da matéria nuclear.
- A temperatura do interior destes objetos $(10^6 10^7 \text{ K})$ é pequena em comparação com a escala da energia nuclear.
- Número bariônico conservado.
- Estranheza não conservada.
- A carga elétrica total deve ser nula.

Transições de fase contínuas

- Leva em conta o conceito de cargas conservadas, onde o número bariônico e a carga elétrica seriam estas cargas, e a conservação deve ser global e não local.
- Transição ocorre com uma fase de coexistência chamada fase mista.
- A fase mista possui estrutura, chamada pasta nuclear.

Transições de fase descontínuas

 Transição ocorre em uma sharp interface, segue os critérios da construção de Maxwell:

•
$$\mu_H = \mu_Q$$

•
$$P_H = P_Q$$

•
$$T_H = T_Q$$

Qual abordagem escolher?

- Estudos sugerem que quanto maior for a tensão superficial σ entre as duas fases, mais a transição se aproxima da construção de Maxwell.
- Porém nada se sabe a respeito da σ . Estima-se que seu valor esteja dentro do intervalo 10 100 *MeV fm*⁻².
- Yasutake et al (2013) mostram através de simulações que, mesmo considerando fase mista, a transição de fase é muito próxima dos critérios de Maxwell.

Transição SWRDP -> MFTQCD - Constr. de Maxwell

ъ

• • • • • • • • • • •

Sac 36 / 47

Equação de Estado SWRDP + MFTQCD

Estrelas de nêutrons, por sua alta concentração de matéria, devem ser modeladas de acordo com a Relatividade Geral.

$$R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R = -\frac{8\pi G}{c^4}T^{\mu\nu}$$

A partir da solução de Schwarzschild para as equações de Einstein, com constante cosmológica nula, derivam-se as equações de Tolman-Oppenheimer-Volkoff:

$$\frac{dP(r)}{dr} = -\frac{\epsilon(r)M(r)}{r^2} \left[1 + \frac{P(r)}{\epsilon(r)}\right] \left[1 + \frac{4\pi r^3 P(r)}{M(r)}\right] \left[1 - \frac{2M(r)}{r}\right]^{-1}$$
$$\frac{dM(r)}{dr} = 4\pi r^2 \epsilon(r)$$

Diagrama Massa-Raio

Rodrigo Souza (IAG-USP)

Existência de CQM na Natureza

	ζ	ξ	M_{max}/M_{\odot}	Raio	Densidade central	Tipo
				km	MeV/fm^3	
$\leftarrow MFTQCD : Stiffness : SWRDP \rightarrow$	0.040	0.00050	1.84	12.82	936	Híbrida
		0.00070	1.95	13.81	698.8	Híbrida
		0.00090	2.08	13.42	815.8	Híbrida
		0.00100	2.13	13.06	936.7	Híbrida
	0.049	0.00040	1.81	12.53	1013.2	Híbrida
		0.00050	1.85	12.87	919	Híbrida
		0.00070	1.96	13.28	817.9	Híbrida
		0.00090	2.06	12.72	1014.6	Híbrida
	0.059	0.00040	1.82	12.55	999	Híbrida
		0.00050	1.86	12.79	933.9	Híbrida
		0.00070	1.96	12.71	970.45	Híbrida
		0.00090	1.99	11.94	1167.9	Hadrônica
	0.071	0.00040	1.83	12.45	1013.2	Híbrida
		0.00050	1.87	12.43	1024.8	Híbrida
		0.00070	1.91	11.66	1245.8	Hadrônica
	0.085	0.00040	1.82	11.76	1272.9	Híbrida

PSR J1614–2230 ($M = 1.97 \pm 0.04 M_{\odot}$)

ζ	ξ	Densidade central
		MeV/fm^3
	0.00070	698.8
0.040	0.00090	815.8
	0.00100	936.7
0.040	0.00070	817.9
0.049	0.00090	1014.6
0.050	0.00070	970.45
0.059	0.00090	1167.9

∍

PSR J0348+0432 ($M = 2.01 \pm 0.04 M_{\odot}$)

ζ	ξ	Densidade central	
		MeV/fm^3	
0.040	0.00090	815.8	
0.040	0.00100	936.7	
0.049	0.00090	1014.6	
0.059	0.00070	970.45	

Equação de Estado QCDIRE

Rodrigo Souza (IAG-USP)

Existência de CQM na Natureza

Equação de Estado QCDIRE

Rodrigo Souza (IAG-USP)

Existência de CQM na Natureza

Equação de Estado QCDIRE - Diagrama Massa-Raio

Rodrigo Souza (IAG-USP)

Existência de CQM na Natureza

Conclusões

Equação de Estado SWRDP-MFTQCD

Modelo concorda com as observações dos pulsares PSR J1614–2230 ($M = 1.97 \pm 0.04 M_{\odot}$) e PSR J0348+0432 ($M = 2.01 \pm 0.04 M_{\odot}$) nas seguintes condições:

- A matéria hadrônica no limite superior de 'stiffness', representado pelos valores de ζ mais baixos.
- Matéria de quarks no limite da matéria mais 'soft', representado pelos valores de ξ menores.

Equação de Estado QCDIRE

- Considerar apenas o confinamento dos quarks não é suficiente para garantir a existência de matéria de quarks a partir de densidades menores.
- Necessidade de incluir novas interações repulsivas ao modelo.

Rodrigo Souza (IAG-USP)

Existência de CQM na Natureza

Obrigado!