
June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Debugging - Hints and
techniques

Rodrigo Alvares de Souza
IAG-USP

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

What is debugging?

• According to Wikipedia, debugging is a
methodical process of finding and reducing
the number of bugs, or defects, in a computer
program.

• However, most people involved in spotting and
removing those defects would define it as an
art rather then a method.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

What is debugging? (cont.)

• The importance of a method of finding errors
and fixing them during the life-cycle of a
software product cannot be stressed enough.

• Testing and debugging are fundamental parts
of programmer's everyday activity but some
people still consider it an annoying option.

• Finding a bug is a process of confirming what
is working until something wrong is found.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Some facts

• In 1998, a crew member of the
guided-missile cruiser USS Yorktown
mistakenly entered a zero as data
value, which resulted in a division by
zero.

• The error cascaded and eventually
shut down the ship's propulsion
system. The ship was dead in water
for several hours because a program
didn't check for valid input.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Some facts (cont.)

• In 1999, the 125 million dollars Mars Climate
Orbiter was assumed lost by officials at NASA.
The failure responsible for loss of the orbiter was
attributed to a failure of NASA's system
engineering process.

• The process did not specify the system of
measurement to be used on the project. As a
result, one of the development teams used
Imperial measurement while the other used the
metric system.

• When parameters from one module were passed
to another, during orbit navigation correction, no
conversion was performed, resulting in the loss of
the craft.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Why does software have bugs?

✔ Human factor
✔ Communication Failure
✔ Unrealistic development timeframe
✔ Poor design logic
✔ Poor coding practices
✔ Lack of version control
✔ Buggy third-party tools
✔ Lack of skilled testing
✔ Last minute changes
✔ Advisor, of course...

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

General concepts about debugging

• After many days of brainstorming, designing
and coding, the programmer finally have a
wonderful piece of code. Everything seems
pretty straightforward but unfortunately it
doesn't work! And now? Now the great fun
starts! Time to dig into the wonderful world of
debugging.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

6 Stages of Debugging Grief

✔ DENIAL: That can't happen to my code.
✔ DISBELIEF: Works fine on my machine!
✔ ANGER: That shouldn't happen. WTF!!
✔ DEPRESSION: Why does that happen?
✔ ANGER (Again): Oh I see...
✔ ACCEPTANCE: How did that ever work?

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Main steps

The debugging process can be divided into four
main steps:

✔ Localizing a bug
✔ Classifying a bug
✔ Understanding a bug
✔ Repairing a bug

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

1 – Localizing a Bug

A typical attitude of inexperienced programmers
towards bugs is to consider their localization an
easy task: they notice their code does not do
what they expected, and they are led astray by
their confidence in knowing what their code
should do. This confidence is completely
deceptive because spotting a bug can be very
difficult.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

2 – Classifying a bug

Despite the appearance, bugs have often a
common background. This allows to attempt a
quite coarse, but sometimes useful,
classification:

✔ Syntactical Errors: should be easily caught by your
compiler. I say "should" because compilers, beside
being very complicated, can be buggy themselves.
In any case, it is vital to remember that quite often
the problem might not be at the exact position
indicated by the compiler error message.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

2 – Classifying a bug (cont.)

✔ Build Errors: derive from linking object files which were not
rebuilt after a change in some source files. These
problems can easily be avoided by using tools to drive
software building, like GNU Make.

✔ Basic Semantic Errors: comprise using uninitialized
variables, dead code and problems with variable types.
A compiler can highlight them to your attention,
although it usually has to be explicitly asked through
flags.

✔ Semantic Errors: include using wrong variables or
operators (e.g., & instead of && in C++). No tool can
catch these problems, because they are syntactically
correct statements, although logically wrong.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Physicists' way to classify a bug

A funny physical classification distinguishes between
Bohrbugs and Heisenbugs.

✔ Bohrbugs are deterministic: a particular input will always
manifest them with the same result.

✔ Heisenbugs are random: difficult to reproduce reliably,
since they seem to depend on environmental factors
(e.g. a particular memory allocation, the way the
operating system schedules processes, the phase of
the moon and so on). In C++ a Heisenbug is very often
the result of an error with pointers.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

3 – Understanding a bug

A bug should be fully understood before attempting to fix it.
Trying to fix a bug before understanding it completely
could end in provoking even more damage to the code,
since the problem could change form and manifest itself
somewhere else, maybe randomly. The following check-list
is useful to assure a correct approach to the investigation:

✔ Do not confuse observing symptoms with finding the real
source of the problem;

✔ Check if similar mistakes (especially wrong assumptions)
were made elsewhere in the code;

✔ Verify that just a programming error, and not a more
fundamental problem (e.g. an incorrect algorithm), was
found.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

4 – Repairing a bug

The final step in the debugging process is bug
fixing. Repairing a bug is more than modifying
code. Any fixes must be documented in the code
and tested properly. More important, learning
from mistakes is an effective attitude: it is good
practice filling a small file with detailed
explanations about the way the bug was
discovered and corrected.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

4 – Repairing a bug (Keeping track)

Several points are worth recording:
✔ how the bug was noticed, to help in writing a test

case;
✔ how it was tracked down, to give you a better insight

on the approach to choose in similar
circumstances;

✔ what type of bug was encountered;
✔ if this bug was encountered often, in order to set up a

strategy to prevent it from recurring;

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

4 – Repairing a bug (Keeping track)

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

General Debugging Techniques

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Exploit compiler features

✔ The compiler is your friend. A good compiler can perform
static analysis in your code. Static analysis can help in
detecting a number of basic semantic problems, e.g.
type mismatch or dead code.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Read the right documentation (i.e. RTFM)

The relevant documentation for the task, the tools, the libraries
and the algorithms employed must be at fingertips to find the
relevant information easily. As far as documentation is
concerned, the most important distinction is between tutorials
and references.

✔ A tutorial is a pedagogical paper, usually with plenty of examples, its first
aim is to convey ideas about the subject.

✔ Reference manuals, on the contrary, are comprehensive and exhaustive
descriptions, which allow to find the answers to questions through
indexes and cross-references.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

The Print Technique

Despite its popularity, this technique has strong disadvantages.
✗ Code insertion is temporary, to be removed as soon as the bug is fixed. A

new bug means a new insertion, making it a waste of time. In
debugging as well as in coding, the professional should aim to find
reusable solutions whenever possible. Printing statements are not
reusable, and so are deprecated.

✗ Printing statements clobber the normal output of the program, making it
extremely confused.

✗ They also slow the program down considerably: accessing to the
outputting peripherals becomes a bottleneck.

✗ Finally, often they do not help at all, because for performance reasons,
output is usually buffered and, in case of crash, the buffer is
destroyed and the important information is lost, possibly resulting in
starting the debugging process in the wrong place.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Logging

Logging takes the concept of printing messages, expressed in the
previous item, one step further.

✔ Logging is a common aid to debugging. Everyone who has tried at least
once to solve some system related problems (e.g. at machine start-
up) knows how useful a log file can be. Logging means automatically
recording information messages or events in order to monitor the
status of your program and to diagnose problems.

✔ It is heavily used by daemons and services, exactly because their failure
can affect the correct operation of the whole system.

✔ It can even form the basis of software auditing, that is the evaluation of
the product to ascertain its reliability.

✔ Some languages/libraries can provide this functionality: Logger objects
(Python), log4j (Java), FLIBS (Fortran), log4c (C) , log4cpp (C++), etc.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Defensive programming and assertions

Assertions are expressions which should evaluate to be true at a specific
point in the code.

✔ If an assertion fails, a problem was found.
✔ The important point to remember about assertions is that it make no

sense to execute a program after an assertion fails.
✔ Writing assertions in the code makes assumptions explicit.
✔ Since assert is a macro, it can be easily removed from the final version of

your code by compiling it out.
✔ Example:

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

The Debugger

✔ When every other checking tool fails to detect the
problem, then it is debugger's turn.

✔ A debugger allows working through the code line-by-
line to find out what it is going wrong, where and why.

✔ It allows working interactively, controlling the execution
of the program, stopping it at various times, inspecting
variables, changing code flow while running.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Debugger Features - Breakpoints

✔ Breakpoints stop program execution on demand: the
program runs normally until it is about to execute the
piece of code at the same address of the breakpoint. At
that point it drops back into the debugger to look at
variables, or continue stepping through the code.

✔ Breakpoints are fundamental in interactive debugging,
and accordingly have many options associated with
them.

✔ They can be set up on a specific line number, at the
beginning of a function, at a specific address, or
conditionally.

✔ After stopping the program as a consequence of a
breakpoint, a debugger can resume its execution.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Debugger Features - Watchpoints

✔ Another important feature that all decent debuggers
must offer is the possibility to set watchpoints.

✔ Watchpoints are particular type of breakpoints which
stop the code whenever a variable changes, even if the
line doesn't reference the variable explicitly by name.

✔ Instead, a watchpoint looks at the memory address of
the variable and alerts the programmer when
something is written to it.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Debugger Features – Step in, out, over

Once you have reached a breakpoint, you can control
specifically how you want it to reenter your code. The
step operations available to you include:

✔ Step Into: executes a single program statement at a time. If the
current execution point (indicated by an arrow, usually) is located on a
call to a method, the Step Into command steps into that method and
places the execution point on the method's first statement.

✔ Step Over: enables you to execute program statements one at a
time. However, if you issue the Step Over command when the current
execution point is located on a method call, the debugger runs that
method without stopping (instead of stepping into it), then positions
the execution point on the statement that follows the method call.

✔ Step Out: will finish executing a method call you have stepped into,
and return to the next executable line in the calling method.

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Summary

June 16th, 2014 Rodrigo Alvares de Souza – Debugging Techniques - http://www.astro.iag.usp.br/~rsouza/

Demonstration

Now I am going to demonstrate these concepts using the Eclipse IDE
+ Pydev Plugin (Python).

	Presentation TITLE
	Example Bullet Point slide
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

